TOPEX/POSEIDON PROJECT SATELLITE/SENSORS PERFORMANCE CHARACTERISTICS WORKSHOP #11

OPERATIONAL TRAJECTORY PRODUCTS

Abe Soroosh
NAV/PVT
August 20, 2002

Contents

Raytheon

Operational Orbit Ephemeris (OOE) Performance

On-Board Computer (OBC) Ephemeris Performance

Other Orbit Products: OEF, ORF

OOE Performance

Raytheon

REQUIREMENTS

The accuracy requirements for the OOE are (all 3s):

Sequence Development (OEF)	±20 km after 7 days
OBC Ephemeris	±6 km after 7 days
Ground Track Repeatability	±750 m at Ascending Node after 30 days
IGDR Data Location	±1 km after 5 days
DORIS Initialization	±3 km along-track after 5 days

Driving requirement is for Ground Track Repeatability

OOE Performance

Raytheon

- The OOE accuracy can be achieved by direct comparison with the Precision Orbit Ephemeris (POE) and/or Medium Orbit Ephemeris, GPS and SLR data, (MOE)
- Comparison with MOE vectors is presented to show that using MOE results are acceptable for TOPEX orbit and ground track monitoring if FDF support is not available
- Extended Precision Vectors (EPVs) received from the GSFC/FDF are compared with the POE on 20 selected days between June 2001 and Sept 2001.
- Comparisons are performed in orbit plane coordinates.

Raytheon

OOE-MOE EPV Orbital Parameters Along-track Difference

OOE-MOE EPV Orbital Parameters Cross-track Difference

OOE-MOE EPV Orbital Parameters Radial Difference

OOE Performance

Raytheon

• It agrees very well with the MOE:

Position differences (m)	Min.	Max.	Mean	Standard deviation
Radial	-1.7	1.2	-0.004	0.6
Along Track	-14.4	24.3	+0.6	6.4
Cross Track	-1.7	1.4	-0.041	0.6

OOE Performance

Raytheon

HISTOGRAM OF POSITION DIFFERENCES (OOE minus POE)

OOE Performance

Raytheon

HISTOGRAM OF VELOCITY DIFFERENCES (OOE minus POE)

OOE Performance

Raytheon

- The Operational Orbit Ephemeris (OOE) continues to meet all accuracy requirements.
- It agrees very well with the POE and MOE Results.

OBC Ephemeris Performance

Raytheon

POINTING ERROR REQUIREMENTS

 Ephemeris prediction errors due to operational orbit determination are < 0.015 deg (rms)

Equivalent to 2 km along track position error

 Ephemeris errors due to on-board representation and computation are < 0.022 deg (rms)

Equivalent to 2.9 km along track position error

 Combined pointing error can be 0.027 deg (rms), equivalent to an along-track position error of 3.6 km

OBC Ephemeris Performance

Raytheon

EPHEMERIS REPRESENTATION ACCURACY

- Representation accuracy is routinely measured by duplicating OBC on-board computations as part of the Command Load generation process:
 - Tables 33 (T/P) and 34 (TDRSS) generated, then used to propagate ephemeris for direct comparison with original definitive OOEs
 - Along track position and angular differences computed for direct comparison with required accuracy

OBC Ephemeris Performance

Raytheon

RADIAL POSITION ERRORS OF OOE USED TO COMPUTE OBC EPHEMERIS COMMAND LOADS

OBC Ephemeris Performance

CROSS-TRACK POSITION ERRORS OF OOE USED TO COMPUTE OBC EPHEMERIS COMMAND LOADS

OBC Ephemeris Performance

ALONG-TRACK POSITION ERRORS OF OOE USED TO COMPUTE OBC EPHEMERIS COMMAND LOADS

OBC Ephemeris Performance

Raytheon

NADIR POINTING ERRORS DUE TO POSITION ERRORS OF OOE

OBC Ephemeris Performance

Raytheon

HISTOGRAM OF NADIR POINTING ERRORS DUE TO OOE POSITION ERRORS FOR OBC EPHEMERIS COMMAND LOADS (SEQ0126-0226)

OBC Ephemeris Performance

ALONG TRACK POSITION ERROR OF OOE USED TO COMPUTE OBC EPHEMERIS COMMAND LOADS

OBC Ephemeris Performance

Raytheon

 Pointing accuracy requirements placed on the OBC ephemeris command load continue to be met, including all data reported here between SEQ 01/026 and 02/026.

Other Orbit Products

Raytheon

- Generation of the Orbit Events File (OEF) and Orbit Revolution
 File (ORF) has continued uneventfully for the last year.
- Two OEFs are being generated weekly covering TDRS 41E + 171W, and 47E + 174W events.

Automation of Orbit Products Generation

- Orbit Products generation (FDF EPV processing, TOPEX and TDRS ephemerides, and ORF) started in automated environment in the NAVT Flight OPS at Raytheon this year.
- This process is being run daily / 7 days a week. Products are available each morning for NAV analyst quality assurance and delivery.
- This automation process will be expanded to include JASON-1, ULYSSES, and more missions in the near future.